📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
Telegram auto-delete message, expiring invites, and more
elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.
The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from tw